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Abstract

The Markov chain approximation method is a widely used, and effi-
cient family of methods for the numerical solution a large part of stochas-
tic control problems in continuous time for reflected-jump-diffusion-type
models. It converges under broad conditions, and there are good algo-
rithms for solving the numerical approximations if the dimension is not
too high. It has been extended to zero-sum stochastic differential games.
We apply the method to consider a class of non-zero stochastic differen-
tial games with a diffusion system model where the controls for the two
players are separated in the dynamics and cost function. There have been
successful applications of the algorithms, but convergence proofs have
been lacking. It is shown that equilibrium values for the approximat-
ing chain converge to equilibrium values for the original process and that
any equilibrium value for the original process can be approximated by
an ε-equilibrium for the chain for arbitrarily small ε > 0. The numerical
method solves a stochastic game for a finite-state Markov chain.
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1 Introduction

The aim of this paper is to extend the Markov chain approximation method
to numerically solve non-zero-sum stochastic differential games. The method
is widely used, robust, and relatively easy to use. It covers the majority of
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stochastic control problems in continuous time, for controlled reflected-jump-
diffusion type models that have been of interest to date, and converges under
broad conditions. For the control problem there are good algorithms for solv-
ing the numerical problems, if the dimension is not too high [15]. The method
was extended to zero-sum stochastic differential games in [12, 13, 14], with the
last two references concerned with the ergodic cost case, extending partial prior
results such as [1, 17, 18]. There has been successful numerical work on non-
zero-sum differential games [8, 9], based on the Markov chain approximation
method, but there does not seem to be any available theory concerning conver-
gence. Works such as [3] are concerned with approximations to non-zero-sum
games in normal form and do not apply to the system models or the type of
approximations that appear in our numerical approximations.

We will consider a discounted cost problem for a diffusion model in a hy-
perrectangle G, with absorption on the boundary. The state space G and the
boundary absorption are selected only to simplify the development so that we
can concentrate on the issues that are unique to the non-zero-sum case. One
can replace the hyperrectangle and boundary absorption by an arbitrary con-
vex polyhedron with boundary reflection, if the reflection directions satisfy the
conditions in [15] or in [12]. The hyperrectangular state space is often used for
purely numerical reasons, to assure a bounded state space, and then it would
be large enough so that it would not interfere with the values for the initial
conditions of main interest. We will work with two-player games. Any number
of players can be dealt with but we stick to two for notational simplicity. The
non-zero-sum game is difficult because, as opposed to the zero-sum case, the
players are not strictly competitive and have their own value functions.

The idea of the Markov chain approximation method is to first approximate
the controlled diffusion dynamics by a suitable Markov chain on a finite state
space with a discretization parameter h, then approximate the cost functions.
One solves the game problem for the simpler chain model, and then proves
that the value functions associated with equilibrium or ε-equilibrium strate-
gies for the chain converge to the value functions associated with equilibrium
or ε1-equilibrium strategies for the diffusion model, where ε1 → 0 as ε → 0.
The methods of proof are purely probabilistic, no PDE techniques are required,
so no knowledge of whatever PDE’s yield the equilibrium values are needed.1

Such methods have the advantage of providing intuition concerning numeri-
cal approximations, they cover the bulk of the problem formulations to date,
and they converge under quite general conditions. The essential condition is
a natural “local consistency” condition. Getting approximations satisfying this
condition is usually straightforward. Many methods are discussed in [15] and all
of them are applicable to the game problem of interest here. Furthermore, the
numerical approximations are represented as processes which are close to the
original, which gives the method intuitive meaning. We are not concerned with
algorithms for numerically solving the game for the chain model, only showing

1At present there seems to be no information available concerning the PDE’s that yield
the values.
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convergence of the solutions to the desired values as the discretization parameter
goes to zero.

In Section 2, the model and the cost functions for the players are defined,
the boundary conditions discussed and various background material is given. A
“uniform in the controls” discrete-time approximation that will be used in the
sequel is also given. The convergence proof depends heavily on the fact that the
original diffusion process can be approximated (uniformly in the controls), with
various approximations to the controls, and the needed results are developed
in Section 3. A particular representation of an ε-equilibrium strategy, in terms
of a “smooth” conditional probability, depending only on selected samples of
the driving Wiener process (and not on the entire Wiener process), is given
in Section 4. Various facts concerning the Markov chain approximation are
collected in Section 5. The reader is referred to [15] for a fuller treatment. The
chain is represented in terms of a driving martingale, and this representation is
used to get analogs of the results in Section 3 that use approximations to the
chain to show that the probability law of the chain and the costs change little
if the control process is approximated in various ways. These results are new
and should be more broadly useful in dealing with numerical approximations.
Theorem 6.1 in Section 6 shows that an ‘approximate” equilibrium (value or
strategy) for the diffusion is an “approximate” equilibrium (value or strategy)
for the chain for small discretization parameter h. If the ε-equilibrium value for
the chain is unique for small ε > 0, then the convergence proof is complete since
an “approximate” equilibrium value for the chain is also one for the diffusion.
If the value is not unique then the proof of this last fact is more difficult, and
we restrict attention to the case where the diffusion coefficient does not depend
on the state. This is done in Theorem 6.2, which is a consequence of Theorem
5.6, which, in turn, applies a strong approximation theorem to show that the
discrete time approximation to the diffusion and that for the interpolated chain
are very close, uniformly in the controls.

2 The Model

We consider systems of the form, where x(t) ∈ IRv, Euclidean v-space,

x(t) = x(0) +
∫ t

0

2∑
i=1

bi(x(s), ui(s))ds+
∫ t

0

σ(x(s))dw(s), (2.1)

where player i = 1, 2, has control ui(·) and cost function

Wi(u) = Eux

∫ τ

0

e−βt
∑
i

ki(x(s), ui(s))ds+ Eux
∑
i

e−βτgi(x(τ)). (2.2)

Condition (A2.1) below holds, β > 0, τ is the first time that the boundary of G
is hit (it equals infinity if the boundary is never reached), and w(·) is a standard
vector-valued Wiener process. The Eux denotes the expectation given the use of
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control u(·) = (u1(·), u2(·)) and initial condition x. Define b(·) = b1(·) + b2(·),
k(·) = k1(·) + k2(·).

A2.1. The functions bi(·), and σ(·) are bounded and continuous and Lipschitz
continuous in x, uniformly in u. The controls ui(·) for player i take values in
Ui, a compact set in some Euclidean space, and the functions ki(·) and gi(·) are
bounded and continuous.

A control ui(·) is said to be in Ui, the set of admissible controls for player i, if
it is measurable, non-anticipative with respect to w(·), and Ui-valued. Later we
will introduce strategies and admissible relaxed controls. The methods of proof
use a weak convergence analysis as in [15], and to the extent possible we use
the results of that reference. For S a topological space, let D[S; 0,∞) denote
the S-valued functions on [0,∞) that are right continuous and have left hand
limits, and with the Skorohod topology [5, 15] used. If S = IRv, then we write
D[S; 0,∞) = Dv[0,∞).

The first hitting time τ . Getting numerical solutions requires working in a
bounded state space. Often the physics of the problem provide both a bounded
state space and the proper boundary conditions. Otherwise, “numerical” bound-
aries are added. In any case, one needs to provide the necessary boundary
conditions. These will be equivalent to either reflection or absorption at the
boundary. Both are covered in [15]. Here, we chose boundary absorption, but
the details that are unique to the non-zero-sum game problem would be the
same in both cases.

The nature of the hitting time τ of the boundary of the set G poses a
particular concern from the point of view of the convergence of the numerical
algorithm. The proof of convergence generates a sequence of process approx-
imations (continuous-time interpolations of the approximating chain) and the
exit or boundary hitting times of this sequence has to converge, in an appro-
priate probabilistic sense, to the exit time of (2.1). In fact, no matter what the
numerical procedure, something analogous must take place. In order to see the
problem, refer to Figure 1.
In the figure, the sequence of functions φn(·) converges to the limit function
φ0(·), but the sequence of first contact times (τn) of φn(·) converges to a time
τ0 which is not the moment τ of first contact of φ0(·) with the boundary line
∂G of G. The problem in this case is that the limit function φ0(·) is tangent to
∂G at the time of first contact.

For our control problem, if the approximating costs are to converge to the
costs for (2.1), (2.2), then we need to assure (at least with probability one)
that the paths of the limit x(·) are not “tangent” to ∂G at the moment τ of
first hitting the boundary. For φ(·) in Dv[0,∞) (with the Skorokhod topology
used), define the function τ̂(φ) with values in the compactified infinite interval
IR

+
= [0,∞] by: τ̂(φ) = ∞, if φ(t) ∈ G0, the interior of G, for all t < ∞, and

otherwise use
τ̂(φ) = inf{t : φ(t) 6∈ G0}.
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Figure 1: Continuity of first exit times.

In the example of Figure 1, τ̂(·) is not continuous at the path φ0(·).
If the φ0(·) in the figure were a sample path of a Wiener process w(·), then the

probability is zero that it would be “tangent” to the boundary of G at the point
of first contact. Indeed, w.p.1, the path would cross the line infinitely often in
any small time interval after first contact. Hence, w.p.1, the first hitting times of
any approximating sequence would have to converge to the hitting time of w(·).
The situation is similar if the Wiener process were replaced by the solution to
a stochastic differential equation with a uniformly positive definite covariance
matrix a(x) = σ(x)σ′(x). The following condition will be used. Note that
the condition can be assured to hold if the randomized stopping approximation
discussed below is used.

A2.2. For each initial condition and control, the function τ̂(·) is continuous (as
a map from Dv[0,∞) to the compactified interval [0,∞]) with probability one
relative to the measure induced by the solution to (2.1).

The tangency problem would be a concern with any numerical method,
since they all depend on some sort of approximation. For example, the con-
vergence theorems for the classical finite difference methods for elliptic and
parabolic equations generally use a nondegeneracy condition on a(x) in order
to (implicitly) guarantee (A2.2). In fact, one can always add an independent
v-dimensional Wiener process with small variance to (2.1), which will assure
(A2.2), while changing the costs arbitrarily little.

The verification of (A2.2) for the case where a(x) is degenerate is more com-
plicated, and one needs to work with the particular structure of the individual
case. The boundary can often be divided into several pieces, where we are able
to treat each piece separately. For example, there might be a segment where
a “directional nondegeneracy” of a(x) guarantees the almost sure continuity of
the exit times of the paths which exit on that segment, plus a segment where the
direction of the drift gives a similar guarantee, plus a segment on which escape
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is not possible, and a “remaining” segment. Frequently, the last “complemen-
tary” set is a finite set of points or a curve of lower dimension than that of the
boundary. Special considerations concerning these points can often resolve the
issue there. An important class of such a degenerate example is illustrated in
[10, pp. 64-66]. In that two-dimensional example, G is the symmetric square
box centered about the origin and the system is (x = (x1, x2))

dx1 = x2dt,
dx2 = udt+ dw,

and the control u(·) is bounded. The above cited “complementary set” is just the
two points which are the intersections of the horizontal axis with the boundary,
and these points can be taken care of by a test such as that in Theorem 6.1 of
[16]. 2

Randomized stopping. An alternative to (A2.2). The boundaries in
control problems are often not fixed precisely. For example, they might be in-
troduced simply to bound the state space. The original control problem might
be defined in an unbounded space, but the space is then truncated for numerical
reasons. Even if there is a given “target set,” it is often not necessary to fix it
too precisely. Such considerations give us some freedom to vary the boundary
slightly. The “randomized stopping” alternative discussed next exploits these
ideas and assures (A2.2). Under randomized stopping, the probability of stop-
ping at time t (if the process has not yet been stopped) goes to unity as x(t) at
that time approaches ∂G. This can be formalized as follows [15].

For some small ε > 0, let λ̄(·) > 0 be a continuous function on the set
Nε(∂G) ∩G0, where Nε(∂G) is the ε−neighborhood of the boundary and G0 is
the interior of G. Let λ̄(x)→∞ as x converges to ∂G. Then stop x(·) at time t
with stopping rate λ̄(x(t)) and stopping cost gi(x(t)) for player i. Randomized
stopping is equivalent to adding an additional (and state dependent) discount
factor which is active near the boundary.

Relaxed controls ri(·). In control theory, when working with problems con-
cerning convergence of sequences or approximations, it is usual to use the so-
called relaxed controls in lieu of ordinary controls. They are used for theoretical
purposes only, for the purposes of getting approximation and convergence proofs.
Suppose that for some filtration {Ft, t <∞}, standard vector-valued Ft-Wiener
process w(·) and for i = 1, 2, ri(·) is a measure on the Borel sets of Ui × [0,∞)
such that ri(Ui × [0, t]) = t and the process ri(A × [0, ·]) is measurable and
non-anticipative for each Borel set A ⊂ Ui. Then ri(·) is said to be an admis-
sible relaxed control for player i with respect to w(·) [6, 15]. Abusing notation
slightly, we use Ui for the set of admissible relaxed controls as well for the set
of admissible ordinary controls ui(·). If the Wiener process and filtration are
obvious or unimportant, we simply say that ri(·) is an admissible relaxed control

2See also [15, p 280, sec ed.] where it is shown that the Girsanov transformation. can play
a useful role in the verification of (A2.2).
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for player i. For Borel sets A ⊂ Ui, we will write ri(A× [t0, t1]) = ri(A, [t0, t1]),
and write ri(A, t1) if t0 = 0. Define U = U1 × U2 and U = U1 × U2. Henceforth
{Ft} will denote a filtration such that w(·) is an Ft-standard Wiener process
and r(·) is admissible, for the r(·) of concern.

For almost all (ω, t) and each Borel A ⊂ Ui, one can define the left derivative3

r′i(A, t) = lim
δ→0

ri(A, t)− ri(A, t− δ)
δ

.

Without loss of generality, we can suppose that the limit exists for all (ω, t).
Then for all (ω, t), r′i(·, t) is a probability measure on the Borel sets of Ui and
for any bounded Borel set B in Ui × [0,∞),

ri(B) =
∫ ∞

0

∫
Ui

I{(αi,t)∈B}r
′
i(dαi, t)dt.

An ordinary control ui(·) can be represented in terms of the relaxed control ri(·)
that is defined by its derivative, which takes the form r′i(A, t) = IA(ui(t)), where
IA(ui) is unity if ui ∈ A and is zero otherwise. The weak topology [15] will be
used on the space of admissible relaxed controls. Relaxed controls are commonly
used in control theory to prove existence and approximation theorems, since any
sequence of relaxed controls has a weakly convergent subsequence. The use of
relaxed controls does not change the range of values of the cost functions.

Define the “product” relaxed control r(·), by its derivative r′(·) = r′1(·, t)×
r′2(·, t). Thus r(·) is a product measure, with marginals ri(·), i = 1, 2. We will
usually write r(·) = (r1(·), r2(·)) without ambiguity. The pair (w(·), r(·)) is
called an admissible pair if each of the ri(·) is admissible with respect to w(·).
In relaxed control terminology, (2.1) and (2.2) are written as

x(t) = x(0) +
2∑
i=1

∫ t

0

∫
Ui

bi(x(s), αi)r′i(dαi, s)ds+
∫ t

0

σ(x(s))dw(s). (2.3)

Wi(x, r) = Erx

∫ τ

0

e−βt
∫
Ui

∑
i

ki(x(s), αi)r′i(dαi, s)ds+
∑
i

Erxe
−βτgi(x(τ)).

(2.4)
The drift terms can be written as (e.g.)

∫ t
0

∫
U
b(x(s), α)r′(dα, s)ds.

A discrete time system. We will also have need for the discrete time form

x∆(n∆ + ∆) = x∆(n∆) +
∫ n∆+∆

n∆

∫
U

b(x∆(n∆), α)r′(dα, s)ds

+σ(x∆(n∆))[w(n∆ + ∆)− w(∆)].
(2.5)

We can define the continuous time interpolation x∆(·) either by x∆(t) = x∆(n∆)

3“Left” is used because we need the derivative to be non-anticipative.
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for t ∈ [n∆, n∆ + ∆), or as (on the same interval)

x∆(t) = x∆(n∆) +
∫ t

n∆

∫
U

b(x∆(n∆), α)r′(dα, s)ds+
∫ t

n∆

σ(x∆(n∆))dw(t),

(2.6)
where it is assumed that r(t, ·) is adapted to Fn∆−, for t ∈ [n∆, n∆ + ∆).
The associated cost function W∆

i (x, r) is (2.4) with x∆(·) replacing x(·). Let
r∆(·), r(·) be admissible relaxed controls with respect to w(·) with r∆(·)→ r(·)
w.p.1 (in the weak topology) and r∆(·) adapted as above. Then, as ∆→ 0, the
sequence of solutions {x∆(·)} also converges w.p.1, uniformly on any bounded
time interval and the limit (x(·), r(·), w(·)) solves (2.3). By (A2.2), the first
hitting times of the boundary also converge w.p.1. to that of the limit. The
costs converge as well. The analogous result holds if the randomized stopping
alternative is used.

Randomized vs. relaxed controls. For the discrete time system (2.5) or
(2.6), the relaxed control can be approximated by a randomized ordinary con-
trol (which relates the relaxed control to randomized strategies), as follows.
Let r(·) be a relaxed control that is admissible with respect to w(·). Let ũ∆

i,n

be a random variable with the (conditional on Fn∆) distribution r∆i,n(·) =
En∆ [ri (·, [n∆, n∆ + ∆])] /∆, where En∆ denotes the conditional expectation
given Fn∆. Set ũ∆

n = (ũ∆
1,n, ũ

∆
2,n), define its continuous-time interpolation (with

intervals ∆) ũ∆(·), and define the process x̃∆(·) by x̃∆(0) = x∆(0) = x(0) and

x̃∆(n∆ + ∆) = x̃∆(n∆) + ∆b(x̃∆(n∆), ũ∆
n ) + σ(x̃∆(n∆)[w(n∆ + ∆)−w(n∆)].

(2.7)
Let x̃∆(t) denote the continuous time interpolation. Then we have the following
result, where the relaxed control r∆(·) that is used for x∆(·) has the derivative
r∆,′(·) = r∆1,n(·)r∆2,n(·) on [n∆, n∆ + ∆). The theorem implies that in the con-
tinuous limit, randomized controls turn into relaxed controls.

Theorem 2.1. Assume (A2.1). Then for any T <∞,

lim
∆→0

sup
x(0)∈G

sup
r∈U

E sup
t≤T

∣∣x∆(t)− x(t)
∣∣2 = 0, (2.8a)

lim
∆→0

sup
x(0)∈G

sup
r∈U

E sup
t≤T

∣∣x∆(t)− x̃∆(t)
∣∣2 = 0. (2.8b)

Under the additional condition (A2.2) the costs for (2.5) and (2.7) converge
(uniformly in x(0), r(·)) to those for (2.3) as well.

Comment on the proof. Define δx∆
n = x∆(n∆)− x̃∆(n∆). Then

δx∆
n+1 = δx∆

n + ∆
∫
U

[
b(x∆(n∆, α)− b(x̃∆(n∆, α)

]
r∆n (dα)

+
[
σ(x∆(n∆))− σ(x̃∆(n∆))

]
[w(n∆ + ∆)− w(n∆)] +N∆

n ,
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where

N∆
n = ∆

[∫
U

b(x̃∆, α)r∆n (dα)− b(x̃∆(n∆, ũ∆
n )

]
is an Fn∆- martingale difference by the definition of ũ∆

n (·) via the conditional
distribution given Fn∆. Also En∆|N∆

n |2 = O(∆2). The proof of the uniform
(in the control and initial condition) convergence to zero of |x∆(·)− x̃∆(·)| and
of the differences between the integrals

E

∫ t

0

e−βtk(x̃∆(s), ũ∆(s))ds, E

∫ t

0

∫
U

e−βtk(x∆(s), α))r∆,′(dα, s)ds

can then be completed by using the Lipschitz condition and this martingale and
conditional variance property. This implies (2.8b). An analogous argument can
be used to get (2.8a) for each r(·) and x(0). The facts that (A2.2) holds for (2.3)
and that (2.8) holds imply that the stopping times for x∆(·), x̃∆(·) converge to
those for (2.3) as well for each x(0) and r(·).

The uniformity in (2.8a) and in the convergence of the costs can be proved
by an argument by contradiction that goes roughly as follows. Suppose, for
example, that the uniformity in (2.8a) does not hold. Then take a sequence
xm(0), rm(·),∆m → 0, m = 1, 2 . . . , and associated solutions xm(·) to (2.3).
Let rm,∆m

n (·) be defined as r∆n (·) was, but based on rm(·) and let rm,∆m(·)
denote the interpolation of the associated relaxed control. Define xm,∆m(·) as
the solution to (2.6) with interval ∆m and controls rm,∆m(·) (alternatively, it
could be the piecewise constant interpolation). Suppose that, for some T <∞,
lim supm→∞E supt≤T |xm,∆m(t)− x̃m,∆m(t)|2 > 0.

Take an arbitrary weakly convergent subsequence of xm(·), xm,∆m(·), rm(·),
rm,∆m(·), w(·), with (weak-sense) limit denoted by x(·), x̂(·), r(·), r̂(·), ŵ(·). Then
it is easy to show that x(·) = x̂(·) and r(·) = r̂(·), that ŵ(·) is a standard
Wiener process, x̂(·), r̂(·) are non-anticipative with respect to ŵ(·) and that
the set satisfies (2.3). Assume, without loss of generality, that Skorohod rep-
resentation is used [5, 15], so that we can suppose that the original and limit
processes are all defined on the same probability space and that convergence is
w.p.1 in the Skorohod topology. For any T < ∞, the set of random variables
{|xm(t)|2, |xm,∆m(t)|2, t ≤ T} is uniformly integrable. Thus

lim
m→∞

E sup
t≤T

∣∣xm,∆m(t)− x̂(t)
∣∣2 = 0,

and
lim
m→∞

E sup
t≤T
|xm(t)− x̂(t)|2 = 0,

a contradiction to the assertion that the uniformity in x(0) and r(·) in (2.8a)
does not hold.

3 Classes of Controls and Approximations

The convergence proofs will require the use of special approximations to the
general ordinary or relaxed copntrols, and the necessary approximations are
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developed in this section and in Theorem 4.1.
For each admissible relaxed control r(·) and ε > 0, let rεi (·) be admissible

relaxed controls with respect to the same filtration and Wiener process w(·),
with derivatives rε,′i (·), and that satisfy

lim
ε→0

sup
ri∈Ui

E sup
t≤T

∣∣∣∣∫ t

0

∫
Ui

φi(αi)
[
r′i(dαi, s)− r

ε,′
i (dαi, s)

]
ds

∣∣∣∣ = 0, i = 1, 2, (3.1)

for each bounded and continuous real-valued nonrandom function φi(·) and each
T < ∞. Let x(·) and xε(·) denote the solutions to (2.3) corresponding to r(·)
and rε(·), respectively, with the same w(·) used, but perhaps different initial
conditions. In particular, define xε(·) by

xε(t) = xε(0) +
∫ t

0

∫
U

b(xε(s), α)rε,′(dα, s)ds+
∫ t

0

σ(xε(s))dw(s). (3.2)

The processes x(·) and xε(·) depend on r(·) and rε(·), resp., but this dependence
is suppressed in the notation. The next theorem shows that the solution x(·)
is continuous in the controls in the sense that (3.3) below holds, and that the
costs corresponding to r(·) and rε(·) are arbitrarily close for small ε, uniformly
in r(·).

Theorem 3.1. Assume (A2.1). Let (r(·), rε(·)) satisfy (3.1) for each bounded
and continuous φi(·), i = 1, 2, and T < ∞. Define δxε(t) = xε(t) − x(t). Then
for each t

lim
ε→0

sup
x(0),xε(0):|xε(0)−x(0)|→0

sup
r∈U

E

[
sup
s≤t
|δxε(s)|

]2

= 0. (3.3)

Under the additional condition (A2.2)

lim
ε→0

sup
x(0),xε(0):|xε(0)−x(0)|→0

sup
r∈U
|Wi(x, r)−Wi(x, rε)| = 0, i = 1, 2. (3.4)

Comments on the proof. The proof is very similar to that of Theorem 2.1,
and we comment only on the use of (3.1). We can write

δxε(t) = δxε(0) +
∫ t

0

∫
U

[b(xε(s), α)− b(x(s), α)] r′(dα, s)ds

+
∫ t

0

[σ(xε(s))− σ(x(s))] dw(s)

+
∫ t

0

∫
U

b(xε(s), α) [rε,′(dα, s)− r′(dα, s)] ds

(3.5)

It will be seen that the sup over any finite time interval of the absolute value of
the last term of (3.5) goes to zero in mean square, by virtue of (3.1). For small
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λ > 0, that term can be rewritten as (modulo O(λ))

[t/λ]−1∑
l=0

∫ lλ+λ

lλ

∫
U

b(xε(lλ), α) [rε,′(dα, s)− r′(dα, s)] ds

+
[t/λ]−1∑
l=0

∫ lλ+λ

lλ

[b(xε(s), α)− b(xε(lλ), α)] [rε,′(dα, s)− r′(dα, s)] ds.

(3.6)

Here [t/λ] denotes the integer part of t/λ. As λ → 0 the expectation of the
square of the last term of (3.6) goes to zero, uniformly on any finite time interval,
and in r(·), rε(·), x(0), xε(0), whether or not (3.1) holds, since

lim
λ→0

sup
r

sup
ε
E sup
lλ≤t

sup
s≤λ
|xε(lλ+ s)− xε(lλ)|2 = 0. (3.7)

Assumption (3.1) can be used to show that the same uniform limit in mean
square holds for the first term of (3.6) for any λ, as ε → 0. The proof of (3.3)
is a consequence of these facts and the Lipschitz condition. The convergence
of the costs is a consequence of the convergence of the paths, controls, and
an argument concerning the convergence of the stopping times such as used in
Theorem 2.1.

Finite-valued and piecewise constant approximations rε(·) in (3.1).
Now some approximations of subsequent interest will be defined. They are just
piecewise constant and finite-valued ordinary admissible controls. Consider the
following discretization of the Ui. Let Ui ∈ IRdi , Euclidean di-space. Given
µ > 0, partition IRdi into disjoint (hyper)cubes {Rµ,li } with diameters µ. The
boundaries can be assigned to the subsets in any way. Define Uµ,li = Ui∩Rµ,li , for
the finite number (pµi ) of non-empty intersections. Choose a point αµ,li ∈ U

µ,l
i .

Now, given admissible (r1(·), r2(·)), define the approximating admissible relaxed
control rµi (·) on the control value space Uµi = {αµ,li , l ≤ pµi } by its derivative as
rµ,′i (αµ,li , t) = r′i(U

µ,l
i , t). Denote the set of such controls by Ui(µ). The following

theorem is a consequence of Theorem 3.1. A version can also be found in [12].

Theorem 3.2. Assume (A2.1)–(A2.2), and the above approximation of ri(·) by
rµi (·) ∈ Ui(µ), i = 1, 2. Then (3.1), (3.3), and (3.4) hold for µ replacing ε, no
matter what the {Uµ,li , αµ,li }. The same result holds if we approximate only one
of the ri(·).

Finite-valued, piecewise-constant and “delayed” approximations. The
proofs of convergence depend on showing that the cost changes little if the
control actions of any player are discretized in time and slightly delayed. Let
rµi (·) ∈ Ui(µ), where the control value space for player i is Uµi . Let ∆ > 0.
Define the “backward” differences ∆µ,l

i,k = rµi (αµ,li , k∆)−rµi (αµ,li , k∆−∆), l ≤ pµi ,
k = 1, . . . . Define the piecewise constant ordinary controls uµ,∆i (·) ∈ Ui(µ) on
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the interval [k∆, k∆ + ∆) by

uµ,∆i (t) = αµ,li for t ∈

[
k∆ +

l−1∑
ν=1

∆µ,ν
i,k , k∆ +

l∑
ν=1

∆µ,ν
i,k

)
. (3.8)

Note that on [k∆, k∆ + ∆), uµ,∆i (·) takes the value αµ,li on a time interval
of length ∆µ,l

i,k . Note also that the uµ,∆i (·) are “delayed,” in that the values
of ri(·) on [k∆ − ∆, k∆) determine the values of uµ,∆i (·) on [k∆, k∆ + ∆).
Thus uµ,∆i (t), t ∈ [k∆, k∆ + ∆) is Fk∆−-measurable. Let rµ,∆i (·) denote the
relaxed control representation of uµ,∆i (·), with time derivative rµ,∆,′i (·). Let
Ui(µ, δ) denote the subset of Ui(µ) that are ordinary controls and constant on
the intervals [lδ, lδ + δ), l = 0, 1, . . ..

The intervals ∆µ,l
i,k in (3.8) are just real numbers. For later use, it is im-

portant to have them be some multiple of some small δ > 0, where ∆/δ is an
integer. Consider one method of doing this. Divide [k∆, k∆ + ∆) into ∆/δ
subintervals of length δ each. Working in order l = 1, 2 . . . , to each value αµ,li
first assign (the integer part) [∆µ,l

i,k/δ] successive subintervals of length δ. The
total fraction of time that is unassigned on any bounded time interval will go
to zero as δ → 0, and how control values are assigned to them will have little
effect. However, for specificity for future use consider the following method.
The unassigned length for value αµ,li is Lµ,δ,li,k = ∆µ,l

i,k − [∆µ,l
i,k/δ]δ, i ≤ p

µ
i . Define

the sum Sµ,δi,k =
∑
l L

µ,δ,l
i,k , which must be an integral multiple of δ.. Then assign

each unassigned δ-interval at random with value αµ,li,k chosen with probability
Lµ,δ,li,k /Sµ,δi,k . By Theorem 2.1, this assignment and randomization approximates
the original relaxed control.

Let Ui(µ, δ,∆) denote the set of such controls. If uµ,δ,∆i (·) is obtained from
ri(·) in this way, then it is a function of ri(·), but this functional dependence
will be omitted in the notation. Let rµ,∆,δ,′i (·) denote the time derivative of
rµ,∆,δi (·). As stated in the next theorem, which is a consequence of Theorem
3.1, for fixed µ and small δ, uµ,δ,∆i (·) well approximates the effects of uµ,∆i (·)
and ri(·), uniformly in ri(·) and {αµ,li }. In particular, (3.1) holds in the sense
that for each µ > 0, ∆ > 0, and bounded and continuous φi(·), for i = 1, 2,

lim
δ→0

sup
ri∈Ui

E sup
t≤T

∣∣∣∣∫ t

0

∫
Ui

φi(αi)
[
rµ,δ,∆,′i (dαi, s)− rµ,∆,′i (dαi, s)

]
ds

∣∣∣∣ = 0. (3.9)

Theorem 3.3. Assume (A2.1)–(A2.2), Let ri(·) ∈ Ui, i = 1, 2. Given (µ, δ,∆) >
0, approximate as above the theorem to get rµ,δ,∆i (·) ∈ Ui(µ, δ,∆). Then (3.1)
holds for rµ,δ,∆i (·) and (µ, δ,∆) replacing rεi (·) and ε, respectively. Also, (3.9)
holds. In particular, given ε > 0, there are µε > 0, δε > 0,∆ε > 0 and κε > 0,
such that for µ ≤ µε, δ ≤ δε,∆ ≤ ∆ε and δ/∆ ≤ κε,

sup
x

sup
r1

sup
r2

∣∣∣Wi(x, r1, r2)−Wi(x, r1, u
µ,δ,∆
2 )

∣∣∣ ≤ ε. (3.10)
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The expression (3.10) holds with the indices 1 and 2 interchanged or if both
controls are approximated.

Consider the discrete-time system (2.5) with either the interpolation that is
piecewise constant or (2.6). Then the µε > 0, δε > 0,∆ε > 0 and κε > 0 can be
defined so that

sup
x

sup
r1

sup
r2

∣∣∣Wi(x, r1, r2)−W∆
i (x, r1, u

µ,δ,∆
2 )

∣∣∣ ≤ ε. (3.11)

Define the delayed controls r∆i (·) by r∆,′i (·, s) = r′i(·, s−∆) for s ∈ [n∆, n∆+∆).
The r1(·) in W∆

i (x, r1, u
µ,δ,∆
2 ) can be replaced by its approximation rµ,∆1 (·). The

expression (3.11) holds with the indices 1 and 2 interchanged or if both controls
are approximated.

Note on the initial values of the controls. Since the controls are delayed
by ∆, we can assign the values on the initial interval [0,∆] in any way at all.
Let the values ui(lδ), lδ ≤ ∆, be in Uµi and fixed, for i = 1, 2.

4 Equilibria and Approximations

Elliott-Kalton strategies. The classical definition of strategy as used in dif-
ferential games for models such as (2.1) or (2.3) is that of Elliott and Kalton
[4, 7]. A strategy c1(·) for player 1 is a mapping from U2 to U1 with the follow-
ing property. If admissible controls r2(·) and r̃2(·) satisfy r2(s) = r̃2(s), s ≤ t
for s ≤ t, then c1(r2)(s) = c1(r̃2)(s), s ≤ t, and with an analogous definition
for player 2 strategies. Let Ci denote the set of such strategies or mappings for
player i. An Elliott-Kalton strategy is a generalization of a feedback control.
The current control action that it yields for any player is a function only of the
past control actions, and does not otherwise depend on the form of the strategy
of the other player.

A pair c̄i(·) ∈ Ci, i = 1, 2, is said to be an ε-equilibrium strategy pair if for
any admissible controls ri(·), i = 1, 2,4

W1(x, c̄1, c̄2) ≥W1(x, r1, c̄2)− ε,
W2(x, c̄1, c̄2) ≥W2(x, c̄1, r2)− ε.

(4.1)

The notation W1(x, c1, c2) implies that each player i uses its strategy ci(·).
When writing Wi(x, c1, c2), it is assumed that the associated process is well
defined. This will be the case here, since Theorem 3.3 implies that it is sufficient
to use strategies whose control functions are piecewise constant. If (4.1) holds
with ε = 0, then we have an equilibrium strategy pair. The controls can be

4The definition in [4] requires that the controls ri(A, ·) be progressively measurable, and
not simply measurable and adapted, for each Borel set A. But due to the approximation
results of Theorems 3.1–3.3, this added requirement is unnecessary in our case.
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either ordinary or relaxed. The notation W2(x, c1, r2) implies that player 1 uses
its strategy c1(·) and player 2 uses the relaxed control r2(·).

The above definition of strategy does not properly allow for randomized
controls, where the realized responses given by the strategy of a player to control
process of the other player that are identical on some interval might differ there,
depending on the random choices that it makes. So we also allow randomized
strategies that have the form of the second line in (4.2) below for either one
or both of the players. Theorem 2.1 shows the connection between relaxed
and randomized controls, so that one can work with relaxed controls in lieu of
randomization, if desired.

We will require the following assumption.

A4.1. For each small ε > 0 there is an ε-equilibrium Elliott-Kalton strategy
(c̄ε1(·), c̄ε2(·)) under which the solution to (2.1) or (2.3) is well defined.

The following approximation theorem will be a key item in the development.

Theorem 4.1. Assume (A2.1) and (A2.2). Given ε1 > 0, there are positive
numbers µ, δ,∆, where ∆/δ is an integer, such that the values for any strategy
pair (c1(·), c2(·)), i = 1, 2, with ci(·) ∈ Ci and under which the solution to (2.3) is
well defined5, can be approximated within ε1 by strategy pairs cµ,δ,∆i (·), i = 1, 2,
of the following form. The realizations of cµ,δ,∆i (·) (which depend on the other
player’s strategy or control) are ordinary controls in Ui(µ, δ,∆), and we denote
them by uµ,δ,∆i (·). For integer n, k, and kδ ∈ [n∆, n∆+∆) and αi taking values
in Uµi ,

P

{
uµ,δ,∆i (kδ) = αi

∣∣∣∣w(s), s ≤ kδ;uµ,δ,∆j (lδ), j = 1, 2, l < k

}
= P

{
uµ,δ,∆i (kδ) = αi

∣∣∣∣w(l∆), l ≤ n;uµ,δ,∆j (lδ), j = 1, 2, lδ < n∆
}

= pi,k

(
αi; w(l∆), l ≤ n;uµ,δ,∆j (lδ), j = 1, 2, lδ < n∆

)
,

(4.2)

which defines the functions pi,k(·). For each positive value of µ, δ,∆, the func-
tions pi,k(·) can be taken to be continuous in the w-arguments, for each value of
the other arguments.

Suppose that the control process realizations for player i are in Ui(µ, δ,∆),
but those of the other player are general relaxed controls. Then we interpret
(4.2), applied to that control, as being based on its discretized approximation as
derived above Theorem 3.3.

A convenient representation of the values in (4.2). It will be useful for
the convergence proofs if the random selections implied by the conditional prob-
abilties in (4.2) were systematized as follows. Let {θl} be random variables that
are mutually independent and uniformly distributed on [0, 1]. The {θk, k ≥ l}

5One or both of them might be simply fixed relaxed feedback controls.
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will be independent of all system data before time lδ. For each i, n, k, divide
[0, 1] into (random) subintervals whose lengths are proportional to the condi-
tional probability of the αµ,li as given by (4.2), and select αµ,li if the random
selection on [0, 1] falls into that subinterval. The same random variables {θl}
are used for both players, and for all conditional probability rules of the form
(4.2). This representation is used for theoretical purposes only.

Proof. By Theorem 3.3, it is sufficient to work with strategies whose control
process realizations are in Ui(µ, δ,∆). In any case, let ci(·) ∈ Ci, i = 1, 2, be
any strategies for which the solution to (2.3) is well defined. Then Theorem
3.3 implies that the control process realizations of the strategies can be approx-
imated by those of a pair of strategies cµ,δ,∆i (·), i = 1, 2, with control process
realizations in Ui(µ, δ,∆), i = 1, 2. To get the cµ,δ,∆i (·), player i would start by
calculating the response of ci(·) to the original strategy of the other player, and
then approximate and possibly delay it as done above Theorem 3.3. [I.e., each of
the original control sequences is replaced by the discretization discussed above
Theorem 3.3.] This approximation is uniform in the original strategies in that
the differences in the cost functions can be made small, uniformly in the orig-
inal strategies, for small enough µ, δ,∆. Hence Theorem 3.3 yields the claim.
The cµ,δ,∆i (·) are Elliott-Kalton strategies, since they are simply time and space
discretizations of Elliott-Kalton strategies.

The probability law of (uµ,δ,∆1 (·), uµ,δ,∆2 (·), w(·)) determines the law of the
corresponding solution to (2.1). The law of evolution of the controls can be
written in recursive form, for i = 1, 2, and kδ ∈ [n∆, n∆ + ∆),

P

{
uµ,δ,∆i (kδ) = αi

∣∣∣∣w(s), s ≤ n∆;uµ,δ,∆j (lδ), j = 1, 2, lδ < n∆
}
. (4.3)

This yields a “randomized” Elliott-Kalton strategy pair.
Now apply the control rule (4.3) to the piecewise constant interpolation of

the discrete-time system (2.5). The probability law of the solution on [0, t] is
determined by the law of

(
uµ,δ,∆1 (lδ), uµ,δ,∆2 (lδ), lδ < t;w(n∆), n∆ ≤ t

)
. Hence,

for kδ ∈ [n∆, n∆ + ∆), the probability law of the controls and paths for x∆(·)
can be determined from the formula

P

{
uµ,δ,∆i (kδ) = αi

∣∣∣∣w(l∆), l ≤ n;uµ,δ,∆j (lδ), j = 1, 2, lδ < n∆
}
. (4.4)

By Theorem 3.3, for small enough δ,∆ the path x∆(·) is arbitrarily close (uni-
formly in the original strategies or controls ci(·), i = 1, 2) to the path x(·), both
under uµ,δ,∆i (·), i = 1, 2, where we can suppose (without loss of generality) that
the law of evolution of the controls takes the form (4.4). By the same theorem
and the construction of the cµ,δ,∆i (·), i = 1, 2, for small enough µ, δ,∆ this latter
path is arbitrarily close (uniformly in the original ci(·), i = 1, 2) to the path x(·)
under the original ci(·), i = 1, 2. This argument implies the use of the samples
w(l∆) in (4.2).
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Now turn to the assertion concerning continuity in the w-arguments. (See
also [15, Theorem 10.3.1] on this point.) For ρ > 0, consider the smoothed
conditional probability defined by

pρi,k

(
αi; w(l∆), l ≤ n;uµ,δ,∆j (lδ), j = 1, 2, lδ < n∆

)
= N(ρ)

∫
e−|z−w|

2/2ρpi,k

(
αi; z;u

µ,δ,∆
j (lδ), j = 1, 2, lδ < n∆

)
dz

(4.5)

where N(ρ) is a normalizing constant and w = {w(l∆), l ≤ n}. The variable
z has the same dimension as w. The integral is continuous in the w-variables,
uniformly in the others. Also it converges to

pi,k

(
αi; w(l∆), l ≤ n;uµ,δ,∆j (lδ), j = 1, 2, lδ < n∆

)
for almost all w-values. Hence, by Egoroff’s Theorem, it converges almost uni-
formly in any compact set. For almost all w-values the smoothed conditional
probability will choose the same control values as would the original rule defined
by (4.3) with a probability that goes to unity as ρ → 0. Hence, without loss
of generality we can suppose that the pi,k(·) are smooth in the w-variables, as
asserted.

5 The Markov Chain Approximation: Brief Re-
view and Approximations

5.1 The Markov Chain Approximation Method

We will start by giving a quick overview of the Markov chain approximation
method of [10, 11, 15], starting with some comments for the case where there
is only one player. We will then develop some approximation results that are
analogous to those in Theorem 3.3, and which will be crucial for the conver-
gence theorems in Section 6. The method consists of two steps. Let h > 0 be an
approximation parameter. The first step is the determination of a finite-state
controlled Markov chain ξhn that has a continuous-time interpolation that is an
“approximation” of the process x(·). The second step solves the optimization
problem for the chain and a cost function that approximates the one used for
x(·). Under a natural “local consistency” condition, the minimal cost function
for the chain converges to the minimal cost function for the original problem.
In applications, the optimal control for the original problem is also approxi-
mated. The approximating chain and local consistency conditions are the same
for the game problem. The reference [15] contains a comprehensive discussion
of many automatic and simple methods for getting the transition probabilities
of the chain. The approximations “stay close” to the physical model and can
be adjusted to exploit local features.

The simplest state space for the chain for our model (and the one that we
will use for simplicity in the discussion) is based on the regular h-grid Sh in IRv.
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Define Gh = Sh ∩G and G0
h = Sh ∩G0. It is only the points in G0

h ∪ ∂Gh that
are of interest. On G0

h the chain “approximates” the diffusion part of (2.1) or
(2.3). Let ∂Gh denote the points in Sh − G0

h that can be reached in one step
from G0

h under some control. These are the boundary points, and the process
stops on first reaching them.

Next we define the basic condition of local consistency for the part of a chain
ξhn that is on G0

h. Let uhn = (uh1,n, u
h
2,n) denote the controls that are used at step

n. Define ∆ξhn = ξhn+1 − ξhn and let Eh,αx,n denote the expectation given the data
to step n (when ξhn has just been computed) with ξhn = x and control value
α = uhn to be used on the next step. For the game problem, α = (α1, α2) with
αi ∈ Ui. Define a(x) = σ(x)σ′(x). Suppose that there is a function ∆th(·) (this
is obtained automatically when the transition probabilities are calculated; see
[15] and the example below) such that (this defines the functions bh(·) and ah(·))

Eh,αx,n∆ξhn ≡ bh(x, α)∆th(x, α) = b(x, α)∆th(x, α) + o(∆th(x, α)),

covh,αx,n [∆ξhn − Eh,αx,n∆ξhn] ≡ ah(x, α)∆th(x, α) = a(x)∆th(x, α) + o(∆th(x, α)),

lim
h→0

sup
x∈G,α∈U

∆th(x, α) = 0.

(5.1)
It can be seen that the chain has the “local properties” (conditional mean change
and conditional covariance) of the diffusion process.6 One can always select the
transition probabilities such that the intervals ∆th(x, α) do not depend on the
control variable, although the general theory in [15] does not require it. Such a
simplification is often done in applications to simplify the coding. Let ph(x, y|α)
denote the probability that the next state is y given that the current state is x
and control pair α = (a1, α2) is used.

Under our condition that the controls are separated in b(·), in that b(x, α) =
b1(x, α1) + b2(x, α2), if desired one can construct the chain so that the controls
are “separated” in that the one-step transition probability has the form

ph(x, y|α) = ph1 (x, y|α1) + ph2 (x, y|α2). (5.2)

A useful representation of the transition probabilities. It is useful to
have the chains for each h defined on the same probability space, no matter
what the controls. This is done as follows. Let {χn} be a sequence of mutually
independent random variables, uniformly distributed on the interval [0, 1] and
such that {χl, l ≥ n} is independent of {ξhl , uhl , l ≤ n}. For each value of x =
ξhn, α = uhn, arrange the finite number of possible next possible states y in some
order and divide the interval [0, 1] into successive subintervals whose lengths are
ph(x, y|α). Then for x = ξhn, α = uhn, select the next state according to where the
(uniformly distributed) random choice for χn falls. The same random variables
{χn} will be used in all cases, for all controls and values of h. This representation
is used for theoretical purposes only.

6Whether the chain is Markovian or not depends on the form of the control that is applied.
But the transition probability will always be locally consistent.
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An example of an approximating chain. The simplest case for illustrative
purposes is one-dimensional and where h is small enough so that h|b(α, x)| ≤
σ2(x). Then we can use the transition probabilities and interval, for x ∈ G0

h [15,
Chapter 5],

ph(x, x± h|α) =
σ2(x)± hb(x, α)

2σ2(x)
, ∆th(x, α) =

h2

σ2(x)
, ∆thn =

h2

σ2(ξhn)
.

(5.3)

Admissible controls. Let Fhn denote the minimal σ-algebra that measures the
control and state data to step n, and let Ehn denote the expectation conditioned
on Fhn . An admissible control for player i at step n is a Ui-valued random
variable that is Fhn -measurable. Let Uhi denote the set of the admissible control
processes for player i.

A relaxed control for the chain can be defined as follows. Let rhi,n(·) be a
distribution on the Borel sets of Ui such that rhi,n(A) is Fhn -measurable for each
Borel set A ∈ Ui. Then the rhi,n(·) are said to be relaxed controls for player i at
step n. As for the model (2.3), an ordinary control at step n can be represented
by the relaxed control at step n defined by rhi,n(A) = I{uh

i,n
∈A} for each Borel

set A ⊂ Ui. Define rhn(·) by rhn(A1 × A2) = rh1,n(A1)rh2,n(A2), where the Ai are

Borel sets in Ui. The associated transition probability is
∫
U

ph(x, y|a)rhn(dα).

If rhi,n(A) can be written as a measurable function of ξhn for each Borel set A,
then the control is said to be relaxed feedback. Under any feedback (or relaxed
feedback or randomized feedback) control, the process ξhn is a Markov chain.
More general controls, under which there is more “past” dependence and the
chain is not Markovian, will be used as well. Let Chi denote the set of control
strategies for ξhn.

The cost function. Discretize the costs as follows. The cost functions are
the analogs of (2.2) or (2.4). The cost rate for player i is ki(x, αi)∆th(x).
The stopping costs are gi(·), and τh denotes the first time that the set G0

h is
exited. Let Wh

i (x, uh1 , u
h
2 ) denote the expected cost for player i under the control

sequences uhi = {uhi,n, n ≥ 0}, i = 1, 2. The numerical problem is to solve the
game problem for the approximating chain.

Continuous-time interpolations. The discrete-time chain ξhn is used for
the numerical computations. However, for the proofs of convergence, we use
a continuous-time interpolation ξh(·) of {ξhn} that will approximate x(·). This
will be a continuous-time process that is constructed as follows. Define ∆thn =
∆th(ξhn, u

h
n), and thn =

∑n−1
i=0 ∆thi . Define ξh(t) = ξhn on [thn, t

h
n+1). Define the

continuous-time interpolations uhi (·) of the control actions for player i by uhi (t) =
uhi,n, t

h
n ≤ t < thn+1, and let its (continuous time) relaxed control representation

be denoted by rhi (·). Define rh(·) = (rh1 (·), rh2 (·)), with time derivative rh,′(·).
We use Uhi for the set of continuous time interpolations of the control for player
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i as well. Let τh denote the first exit time from G0
h.

An alternative interpolation. In [15] an interpolation called ψh(·) was used
as well, and had some advantages in simplifying the proofs there. We describe it
briefly so that the convergence results of [15] can be used where needed. For each
h, let νhn , n = 0, 1, . . . , be mutually independent and exponentially distributed
random variables with unit mean, and that are independent of {ξhn, uhn, n ≥ 0}.
Define ∆τhn = νhn∆thn, and τhn =

∑n−1
i=0 ∆τhi . Define ψh(t) = ξhn and uhψ(t) = uhn

on [τhn , τ
h
n+1), Now decompose ψh(·) in terms of the continuous-time compen-

sator and martingale. Since the intervals between jumps are ∆thnν
h
n , where νhn is

exponentially distributed and independent of Fhn , the jump rate of ψh(·) when
in state x and under control value α is 1/∆th(x, α). Given a jump, the distri-
bution of the next state is given by the ph(x, y|α), and the conditional mean
change is bh(x, α)∆th(x, α). So we can write

ψh(t) = x(0) +
∫ t

0

bh(ψh(s), uhψ(s))ds+Mh(t), (5.4)

where the martingaleMh(t) has quadratic variation process
∫ t

0

ah(ψh(s), uhψ(s))ds.

Under any feedback (or randomized feedback) control, the process ψh(·) is a
continuous-time Markov chain.

It can be shown that ([15, Sections 5.7.3 and 10.4.1]) there is a martingale
wh(·) (with respect to the filtration generated by the state and control processes,
possibly augmented by an “independent” Wiener process) such that

Mh(t) =
∫ t

0

σh(ψh(s), uhψ(s))dwh(s) =
∫ t

0

σ(ψh(s))dwh(s) + εh(t), (5.5)

where σh(·)[σh(·)]′ = ah(·) (recall the definition of ah(·) in (5.1)), wh(·) has
quadratic variation It and converges weakly to a standard Wiener process. The
martingale εh(·) is due to the difference between σ(x) and σh(x) (recall the
o(∆th) terms in (5.1)) and

lim
h→0

sup
uh

sup
s≤t

E|εh(s)|2 = 0 (5.6)

for each t. Thus

ψh(t) = x(0) +
∫ t

0

∫
U

bh(ψh(s), α)rh,′(dα, s)ds+
∫ t

0

σ(ψh(s))dwh(s) + εh(t).

(5.7)
The interpolations ξh(·) and ψh(·) are asymptotically equivalent, as seen in

the following theorem, so that any asymptotic results for one are also asymptotic
results for the other. We will use ξh(·).

Theorem 5.1. Assume the local consistency (5.1). Then the time scales with
intervals ∆thn and ∆τhn are asymptotically equivalent.

19



Proof. Let fh(t) = min{n : thn ≥ t}. Write ∆τhn − ∆thn = (νhn − 1)∆thn, a
martingale difference. By the martingale property we have

E sup
n<fh(t)

|thn − τhn |2 = E sup
n<fh(t)

∣∣∣∣∣
n∑
i=0

∆thi (v
h
n − 1)

∣∣∣∣∣ ≤ 4E
fh(t)∑
i=0

[∆thi ]
2E(vhi − 1)2,

which goes to zero as h → 0 by the last line of (5.1). The result is the same if
we define fh(t) = min{n : τhn ≥ t}.

By (5.1), we can write

ξhn+1 = ξhn + bh(ξhn, u
h
n)∆t

h
n + βhn

where βhn is a martingale difference with Ehn[βhn][βhn]′ = ah(ξhn, u
h
n)∆t

h
n. There

are martingale differences δwhn with conditional (given Fhn ) covariance ∆thnI
such that [15, Section 10.4.1], [10, Section 6.6] βhn = σh(ξhn, u

h
n)δw

h
n. Let wh(·)

denote the continuous time interpolation of
∑n−1
i=0 δw

h
n with intervals ∆thn. Then,

abusing notation, we can write

ξh(t) = x(0) +
∫ t

0

bh(ξh(s), uh(s))ds+
∫ t

0

σh(ξh(s))dwh(s) + εh(t),∫ t

0

σh(ξh(s), uh(s))dwh(s) =
∫ t

0

σ(ξh(s))dwh(s) + εh(t),
(5.8)

where εh(·) satisfies (5.6) and is due to the O(∆th) approximation of ah(x, α)
by σ(x)σ(x)′.

Note on convergence. For any subsequence h → 0, there is a further subse-
quence (also indexed by h for simplicity) such that (ξh(·), rh1 (·), rh2 (·), wh(·), τh)
converges weakly to random processes (x(·), r1(·), r2(·), w(·), τ), where ri(·) is
a relaxed control for player i, (x(·), r1(·), r2(·), w(·), I{τh≤·}) is nonanticipative
with respect to the standard vector-valued Wiener process w(·), and, writing
r(·) = (r1(·), r2(·)), the set satisfies

x(t) = x(0) +
∫ t

0

∫
U

b(x(s), α)r′(dα, s)ds+
∫ t

0

σ(x(s))dw(s).

Also, Wh
i (x, rh1 , r

h
2 ) → Wi(x, r1, r2). The proofs of these facts are the same as

for the one-player control case in [15, Chapter 10].

On the construction of δwh(·). A special case. Full details for the general
method of constructing wh(·) are in [15, Section 10.4.1], [10, Section 6.6]. To
illustrate the idea we will consider a very common, case, and one that will be
needed in Theorems 5.2, 5.3, 5.4, 5.6 and 6.2. Suppose that σ(·) = σ is a
constant. Suppose that the components of x can be partitioned as x = (x1, x2),

and σ can be partitioned as σ =
[
σ1 0
0 0

]
where the dimension of x1 is d1,
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and σ1 is a square and invertible matrix of dimension d1. Partition the ah(·) in

the second line of (5.1) as ah(x, α) =
[

a1,h(x, α) a1,2,h(x, α)
a2,1,h(x, α) a2,h(x, α)

]
. As h → 0,

a1,h(·) → σ1[σ1]′ and all other components go to zero, all uniformly in (x, α).
Write the analogous partition wh(·) = (w1,h(·), w2,h(·)). For any Wiener process
w2(·) that is independent of the other random variables, we can let w2,h(·) =
w2(·). The only important component of wh(·) is w1,h(·) and we can write

δw1,h
n ≡ w1,h(thn+1)− w1,h(thn)

= [σ1]−1

[
ξ1,hn+1 − ξ1,hn −

∫ thn+1

thn

∫
U

b1,h(ξhn, α)rh,′(s, dα)ds

]
+ δε1,hn ,

(5.9)
where δε1,hn is due to the approximation of α1,h(·) by σ1[σ1]′ and its interpolation
satisfies (5.6). If an ordinary control is used, then the double integral is just
b1(ξhn, u

h
n)∆t

h
n.

5.2 First approximations to the Chain

Approximation results analogous to those of Theorems 3.1–3.3 can be proved
and will be useful. These approximations have an independent interest and
should be quite useful for other convergence and approximation analyses for
numerical approximations. Theorem 5.2 concerns an approximation to (5.8)
that is based on the same wh(·) process, and will be used in Theorem 6.1.
The wh(·) process depends on the control. For the constant σ-case, Theorem
5.3 shows that this control dependence is small and can be factored out, and
(uniform in the control) approximations in terms of an i.i.d. driving sequence
are developed. Once this control dependence is factored out, more convenient
approximations to the chain can be obtained, and this is done in Theorem 5.4.

Consider the representation (5.8), and for µ, δ,∆ as used in Theorem 3.3 and
the rh(·) = (rh1 (·), rh2 (·)) in (5.8), define the approximation uµ,δ,∆,hi (·), i = 1, 2,
analogously to what was done above Theorem 3.3. For the process wh(·) that
appears in (5.8) under the original control rh(·), define the process

ξµ,δ,∆,h(t) = x(0) +
∫ t

0

b(ξµ,δ,∆,h(s), uµ,δ,∆,h(s))ds+
∫ t

0

σ(ξµ,δ,∆,h(s))dwh(s).

(5.10)
Let rµ,δ,∆,hi (·) denote the relaxed control representation of uµ,δ,∆,hi (·). The pro-
cess defined by (5.10) is not a Markov chain even if the controls are feedback,
since the wh(·) is obtained from the process (5.8) under rh(·) and not under
the rµ,δ,∆,hi (·), i = 1, 2. Let Wµ,δ,∆,h

i (x, rµ,δ,∆,h1 , rµ,δ,∆,h2 ) denote the cost for the
process (5.10). Define the discrete time system

ξ̃µ,δ,∆,h(n∆ + ∆) = ξ̃µ,δ,∆,h(n∆) +
∫ t

0

b(ξ̃µ,δ,∆,h(n∆), uµ,δ,∆,h(s))ds

+σ(ξ̃µ,δ,∆,h(n∆))[wh(n∆ + ∆)− wh(n∆)],
(5.11)
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with initial condition x(0) and piecewise-constant continuous-time interpolation
denoted by ξ̃µ,δ,∆,h(·). Let W̃µ,δ,∆,h

i (x, rµ,δ,∆,h1 , rµ,δ,∆,h2 ) denote the associated
cost. We have the following analog of Theorem 3.3.

Theorem 5.2. Assume (A2.1). Given (µ, δ,∆) > 0, approximate rhi (·) as
noted above to get rµ,δ,∆,hi (·). Given ε > 0, there are µε > 0, δε > 0,∆ε > 0 and
κε > 0, such that for any t <∞, µ ≤ µε, δ ≤ δε,∆ ≤ ∆ε and δ/∆ ≤ κε,

lim
(µ,δ,∆)→0

sup
x,rh

1 ,r
h
2

E sup
s≤t

∣∣ξµ,δ,∆,h(s)− ξh(s)∣∣ = 0. (5.12)

If (A2.2) holds in addition, then

lim
h→0

sup
x,rh

1 ,r
h
2

∣∣∣Wµ,δ,∆,h
i (x, rµ,δ,∆,h1 , rµ,δ,∆,h2 )−Wh

i (x, rh1 , r
h
2 )

∣∣∣ ≤ ε. (5.13)

The expressions (5.12) and (5.13) hold if only one of the controls is approx-
imated, and also if ξµ,δ,∆,h(·) and Wµ,δ,∆,h

i (·) are replaced by ξ̃µ,δ,∆,h(·) and
W̃µ,δ,∆,h
i (·), resp.

Comments on the proof. For notational simplicity in the proof drop the su-
perscripts µ, δ. Define δξ∆,h(t) = ξ̃∆,h(t)− ξh(t). Then, following the procedure
of Theorem 3.1, write

δξ∆,h(t) =
∫ t

0

∫
U

[
b(ξ∆,h(s), α)− bh(ξh(s), α)

]
rh,′(dα, s)ds

+
∫ t

0

[
σ(ξ∆,h(s))− σ(ξh(s))

]
dwh(s)

+
∫ t

0

∫
U

b(ξ∆,h(s), α)
[
r∆,h,′(dα, s)− rh,′(dα, s)

]
ds+ ε1(t)

The wh(·), εh1 (·) are martingales with respect to the filtration induced by the
data (ξh(·), rh(·), wh(·)), wh(·) has quadratic variation It and εh1 (·) satisfies (5.6).
Partition the last integral analogously to what was done in (3.6), with intervals
λ. The process ξ∆,h(·) satisfies the following version of (3.7): For any t > 0 and
small κ > 0 there is hκ > 0 such that for h ≤ hκ,

lim
λ→0

sup
µ,δ,∆

sup
rh

E sup
lλ≤t

sup
s≤λ

∣∣ξ∆,h(lλ+ s)− ξ∆,h(lλ)
∣∣2 ≤ κ.

Now, using the martingale property and the Lipschitz condition one proceeds
in the same way that would be used for approximations to (2.3) in Theorem
3.1. For example, for some constant K, we have the inequality

E sup
s≤t

∣∣δξ∆,h(s)∣∣2 ≤ K ∫ t

0

E
∣∣δξ∆,h(s)∣∣2 ds+ κλ,h(t)

+KE

∣∣∣∣∣∣
[t/λ]−1∑
l=0

∫ (l+1)λ

lλ

b(ξ∆,h(lλ), α)
[
r∆,h,′(dα, s)− rh,′(dα, s)

]
ds

∣∣∣∣∣∣
2

,
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where sups≤t κλ,h(s)→ 0 as λ→ 0, h→ 0. For each small λ, the last term in the
above expression goes to zero uniformly in h as (µ, δ,∆)→ 0, by the method of
approximation of the controls. Then (5.12) follows from the resulting inequality
and the Bellman-Gronwall Lemma. The inequality (5.13) follows from (5.12)
and (A2.2).

5.3 Representations and Approximations of the Chain With
Control-Independent Driving Noise

The driving noise wh(·) depends on the path and control. In Section 6 it will
be useful to have approximations to ξh(·) (uniform in the control and initial
condition) where the driving noise increments are independent of the path and
control. To accomplish this we will need to factor wh(·) as wh(·) = w̄h(·) +
ζh(·) where w̄h(·) does not depend on the control and ζh(·) is “asymptotically
negligible.” We will work with the model described at the end of the first

subsection of this section, where σ =
[
σ1 0
0 0

]
, the dimension of x1 is d1, and

σ1 is a square and invertible matrix of dimension d1. The approximation and
representation results of Theorems 5.2, 5.3 and 5.5 below will hold for such a
form. But to simplify the notation and development, we will work with two
specific forms, each of which is typical of a large class of models and numerical
algorithms. Case 1 below arises when one uses the so-called central difference
approximation. Case 2 arises when one uses a central difference approximation
for the non-degenerate part and a one-sided or “upwind” approximation for the
degenerate part [15, Chapter 5]. Both forms are locally consistent.

Case 1. Suppose that d1 = v, so that σ is invertable. For a = σσ′, suppose that
ai,i −

∑
j:j 6=i |ai,j | ≥ 0. This condition can be weakened if the approximation

intervals can depend on the coordinate direction, or if linear transformations
of the state space do not pose programming difficulties [15, Chapter 5]. In the
same reference it is seen that canonical forms of the transition probabilities and
interpolation interval have the form, where qi,j = qj,i,

ph(x, x± eih|α) =
qi,i ± hbi(x, α)

Q
, ∆th(x, α) = ∆th =

h2

Q

ph(x, x+ eih+ ejh|α) = ph(x, x− eih− ejh|α) =
q+i,j
Q

ph(x, x+ eih− ejh|α) = ph(x, x− eih+ ejh|α) =
q−i,j
Q

Q = 2
∑
i

qi,i + 2
∑
i,j:i 6=j

|qi,j | .

(5.14)

The qi,j are defined in terms of the entries of the matrix σσ′ and are given
in [15, Equation (3.15), Chapter 5]. We suppose that h is small enough so
that all qi,i − h|bi(x, α)| ≥ 0. A simple computation using (5.14) shows that
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bh(x, α) = b(x, α) and ah(x, α) = σσ′ + O(∆th). Also, by (5.14) we can write
∆thn = ∆th. In one dimension, (5.14) reduces to (5.3), where q1,1 = σ2/2 is
determined by the local consistency condition (5.1).

Case 2. Suppose that σ can be partitioned as in the last paragraph of the

first subsection of this section: I.e., σ =
[
σ1 0
0 0

]
where the dimension of x1

is d1, and σ1 is a square and invertible matrix of dimension d1. The problem
concerns the effect of the degenerate part. The following canonical model for
such cases is motivated by the general model of [15, Chapter 5]. Define b̄ =
supx,α

∑v
i=d1+1 |bi(x, α)|. Define ∆th = ∆thn = h2/[Q+hb̄]. Use the form (5.14)

for i ≤ d1, with Q replaced by Q+ hb̄. For i = d1 + 1, . . . , v, use

ph(x, x± eih|α) =
hb±i (x, α)
Q+ b̄

,

ph(x, x|α) =
hb̄−

∑v
i=d1+1 |bi(x, α)|
Q+ hb̄

.

We still have ah(x, α) = σσ′ +O(∆th) and bh(x, α) = b(x, α).

Theorem 5.3. Use either of the models Case 1 or Case 2 described above.
Then we can write δwhn = δw̄hn + δζhn , where the components are martingale
differences. The δw̄hn are i.i.d., {δw̄hl , l ≥ n} is independent of {ξhl , uhl , l ≤
n}, and the components have values O(h). Also Ehnδw̄

h
n[δw̄

h
n]
′ = h2/Q, 7 and

Ehnδζ
h
n [δζhn ]′ = O(h∆th), Ehnδζ

h
n [δw̄hn]

′ = O(h∆th).

Proof. The proof is a simple construction. The basic approach is to first define
δwhn as though b(·) = 0. The result will define δw̄hn. Then dζhn is defined to
make up the difference. The fact that the dominant terms in the transition
probabilities in (5.14) do not depend on h, and that the contributions due to
the drift (hence control and state) are proportional to h makes this possible. To
avoid excessive notation and concentrate on the essential ideas. We start with
Case 1 in one dimension. The treatment of the higher-dimensional model follows
the same pattern and this is illustrated via a two dimensional case. Then the
minor modifications that are required for Case 2 are discussed. The procedure
in the general case should be apparent from the three examples.

Case 1, one dimension. Write the double integral term in (5.9) as b(ξhn, u
h
n)∆t

h,
since bh(·) = b(·). To construct the state transitions, we will use the represen-
tation in terms of the random variables χn described in the paragraph below
(5.2). In one dimension (5.14) is (5.3) and ph(x, x±h|α) = 0.5±hb(x, α)/[2σ2],
∆th = h2/σ2. Now, define ξhn+1 − ξhn by setting it equal to h if the random
sample of χn falls in [0, .5 + hb(ξhn, u

h
n)/2σ

2], and set it equal to −h otherwise.
The “conditional mean” change is 2h[hb(ξhn, u

h
n)/2σ

2] = b(ξhn, u
h
n)∆t

h, which is
just what is required by the local consistency condition (5.1).

7∆th = h2/Q for Case 1,
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Define the martingale difference term δw̄hn as follows. Divide [0, 1] into the
two segments [0, .5], (.5, 1], If the random sample of χn falls in [0, .5], set δw̄hn =
h/σ, otherwise set it equal to −h/σ. It is what δwhn would be if b(·) = 0. Now
define δζhn to make up for the difference. There are two components to δζhn . One
component is due to the error ah(x, α)− σ2 = O(h2). Hence [ah(x, α)]1/2− σ =
O(h2) and the corresponding error in computing the sample values of δwhn is
O(h3). The associated interpolated error process clearly satisfies (5.6).

The second component of δζhn is due to the neglect of the b(·) in constructing
δw̄hn. We handle this as follows. Suppose that b(ξhn, u

h
n) ≥ 0 (the computation

is analogous if b(ξhn, u
h
n) < 0). Then

δζhn = (2h− b(ξhn, uhn)∆th)/σ, if χn ∈ [.5, .5 + hb(ξhn, u
h
n)/(2σ

2])]

and it equals −b(ξhn, uhn)∆th/σ otherwise. The conditional variance of δζhn is

Ehn
[
2h− b(ξhn, uhn)∆th/σ

]2 hb(ξhn, uhn)
2σ2

+Ehn
[
b(ξhn, u

h
n)∆t

h/σ
]2 (

1− hb(ξhn, u
h
n)

2σ2

)
= O(h)∆th,

uniformly in the controls. The δζhn term depends on the control, but the δw̄hn
term does not. It is simply a Bernoulli sequence, with {δw̄hl , l ≥ n} independent
of the data up to step n. Also, Ehn[δw̄hn]

2 = ∆th, Ehnδw̄
h
nδζ

h
n = O(h)∆th and

Ehn[δζhn ]2 = O(h)∆th, uniformly in the controls.
Now, construct the continuous-time martingales8 w̄h(t), ζh(t) by interpo-

lating the sums
∑n−1
i=0 δw̄

h
i and

∑n−1
i=0 δζ

h
i with intervals ∆th. Write wh(t) =

w̄h(t) + ζh(t). The w̄h(·) does not depend on the control, has quadratic vari-
ation It, and w̄h(s), s ≥ t, is independent of ξh(s), uh(s), s ≤ t. The quadratic
variation of ζh(·) (and its quadratic covariation with w̄h(·)) is O(h), uniformly
in the controls and initial condition.

Comment on the two-dimensional problem. The following computation
illustrates the procedure in higher dimensions. Let q1,2 ≥ 0 for specificity.
Divide the unit interval into successive subintervals of lengths q1,1/Q, q1,1/Q,
q2,2/Q, q2.2/Q, q1,2/Q, q1,2/Q. Again, the aim is to reproduce the transition
probabilities (5.14). If χn falls in [0, (q1,1+hb1(ξhn, u

h
n))/Q], set ξh1,n+1−ξh1,n = h,

and ξh2,n+1 − ξh2,n = 0. If χn falls in [(q1,1 + hb1(ξhn, u
h
n))/Q, 2q1,1/Q], then set

ξh1,n+1 − ξh1,n = −h, and ξh2,n+1 − ξh2,n = 0. Do the analog for the second
component, using the two intervals of length q2,2/Q. If χn falls in the next to
last of the four subintervals, then set ξhn+1 − ξhn = (h, h), and equal to (−h,−h)
if χn falls in the last of the four subintervals. Define δw̄hn by repeating the above
with b(x, α) = 0 and premultiplying by σ−1. The procedure is analogous in any
dimension.

Comment on Case 2. For ease of presentation, let us work in two dimensions,
where only the first component of x(·) has a Wiener process driving term. Then

8Actually, martingales when evaluated at the thn, but the difference is unimportant.
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b̄ = maxx,α |b2(x, α)| and Q = 2q1,1 = 2[σ1]2. Slightly modifying the procedure
used for Case 1, divide the unit interval into successive subintervals of lengths

q1,1
Q+ hb̄

,
q1,1

Q+ hb̄
,

hb̄

Q+ hb̄

and divide the last subinterval into two further subintervals of lengths

h|b2(x, α)|/[Q+ hb̄], h[b̄− |b2(x, α)|]/[Q+ hb̄].

Analogously to what was done in the one-dimensional example of Case 1, if the
random sample of χn falls in [0, Q/(Q+hb̄)] then set ξh2,n+1− ξh2,n = 0. If it falls
in the complementary interval (Q/(Q+hb̄), 1], then set ξh1,n+1− ξh1,n = 0. If the
random sample of χn falls in the last subinterval, then set ξh2,n+1−ξh2,n = 0. If it
falls into the next to last subinterval, then set ξh2,n+1− ξh2,n = hsign(b2(ξhn, u

h
n)).

If it falls into the first (resp., second) subinterval, then set ξh1,n+1 − ξh1,n = h

(resp., −h). These constructions yield (5.14) with ∆th = h2/[Q+ hb̄].
To get δw̄h1,n, repeat the procedure with b(·) = b̄ = 0 and divide by σ1. In

particular, δw̄h1,n = h/σ1 if χn falls in [0, q1,1/Q]. It is −h/σ1 if χn falls in
(q1,1/Q, 1]. The variance is h2/Q. The value of the second component δw̄h2,n is
unimportant since it is eventually multiplied by zero. So, let us use an inde-
pendent Bernouilli sequence with values ±h/

√
Q, each taken with probability

1/2.
The terms ζhn for this and the previous example compensate for the errors

and is computed using a procedure that is analogous to that in the first Case 1.

The theorem implies that ξh(·) can be written in the form

ξh(t) = x(0)+
∫ t

0

∫
U

b(ξh(s), α)rh,′(dα, s)ds+
∫ t

0

σ(ξh(s))dw̄h(s)+εh2 (t), (5.15)

where εh2 (·) equals εh1 (·) plus a stochastic integral with respect to ζh(·), and
satisfies (5.6). Since the martingale w̄h(·) does not depend on the control and is
essentially the sum of i.i.d. zero mean random variables of size O(h), the form
(5.15) can be used to obtain approximation theorems of the type in Theorems
3.1–3.3. The controls can be space and time discretized with arbitrarily small
change in the costs, just as in the cited theorems. For Case 1, the quadratic
variation process of w̄h(·) is It. For Case 2, it is It[1 + hb̄/Q].

Theorem 5.4. Assume (A2.1) and the models of Theorem 5.3. Define

ξ̃h(t) = x(0) +
∫ t

0

∫
U

b(ξ̃h(s), α)rh,′(dα, s)ds+
∫ t

0

σ(ξ̃h(s))dw̄h(s). (5.16)

Then, for each t > 0,

lim
h→0

sup
x(0),rh

E sup
s≤t

∣∣∣ξh(s)− ξ̃h(s)∣∣∣2 = 0. (5.17)
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If (A2.2) is assumed as well, then the costs for the two processes are arbitrarily
close, uniformly in the control and initial condition.

Now, given (µ, δ,∆) > 0, let uµ,δ,∆,hi (·) be the delayed and discretized ap-
proximation of rhi (·) that would be defined by the procedure above Theorem 3.3,
with relaxed control representation of the pair (i = 1, 2) of approximations being
rµ,δ,∆,h(·). Define the system

ξµ,δ,∆,h(t) = x(0) +
∫ t

0

∫
U

b(ξµ,δ,∆,h(s), α)rµ,δ,∆,h,′(dα, s)ds

+
∫ t

0

σ(ξµ,δ,∆,h(s))dw̄h(s).
(5.18)

Then for t > 0 and γ > 0 there are positive numbers µγ , δγ ,∆γ , hγ , κγ , such
that for µ ≤ µγ , δ ≤ δγ , ∆ ≤ ∆γ , h ≤ hγ , δ/∆ ≤ κγ we have

sup
rh,x(0)

E sup
s≤t

∣∣∣ξµ,δ,∆,h(s)− ξ̃h(s)∣∣∣2 ≤ γ. (5.19)

If (A2.2) is assumed as well, then for small (µ, δ,∆, h) the costs are arbitrarily
close, uniformly in the control and initial condition.

Comment on the proof. The proof of the various assertions follows the lines
of arguments used in Theorem 5.1, exploiting the martingale properties and the
Lipschitz condition. The details are very similar and are omitted.

The terms [w̄h(n∆+∆)−w̄h(n∆)], n = 0, 1, . . . are i.i.d. and have orthogonal
components. For Case 1, the covariance ∆ is times the identity matrix and for
Case 2, it is ∆I[1 + hb̄/Q], and the processes converge to normally distributed
random variables as h→ 0. It will be useful to quantify this closeness for use in
the next section. This will be done in Theorem 5.6, which requires the following
strong approximation theorem for i.i.d. random variables.

Lemma 5.5. [2, Theorem 3.]Let {φn} be a sequence of IRd-valued i.i.d. random
variables with zero mean and bounded (2 + δ)th moment, where 0 < δ ≤ 1.
Suppose that the covariance matrix Γ is non-singular. Then without changing
the distribution, one can redefine the sequence on a richer probability space
together with a Wiener process B(·) with covariance matrix Γ such that∣∣∣∣∣∣

∑
i≤n

φi −B(n)

∣∣∣∣∣∣ = o(n0.5−c) (5.20)

w.p.1 for large n, for some 0 < c < 0.5.

The following theorem asserts that the interpolated chain can be written
essentially as the discrete time system (2.5), which we now write as xµ,δ,∆(·),
when the discretized controls are used.
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Theorem 5.6. Assume (A2.1) and (A2.2) and the models used in Theorem 5.3.
Then we can define the probability space such that w̄h(t) = w(t) + ρh(t), where
w(·) is a vector-valued Wiener process with covariance matrix the identity. For
each t > 0, sups≤t |ρh(s)| → 0 and E sups≤t |ρh(s)|2 → 0 as h→ 0. Let xµ,δ,∆(·)
be the solution to (2.5) with the same Wiener process w(·) and with the controls
that are used in (5.18). Then, for any t > 0,

lim
h→0

sup
rh,x(0)

E sup
s≤t

∣∣xµ,δ,∆(s)− ξµ,δ,∆,h(s)
∣∣2 = 0. (5.21)

Proof. Since we have assumed that the same controls are used for both systems
(2.5) and (5.18), some explanation is needed. Define φn by δw̄hn = φn

√
h2/Q.

This can be done since the parameter h is only a linear scale factor in the
construction of the δw̄hn. Then φn satisfies the conditions of Lemma 5.5 and
we can suppose that the probability space is such that (5.20) holds for some
Wiener process B(·), whose covariance matrix will be the identity. Then, on
this probability space define δw̄hn in terms of the φn, as above.

Now, starting with the δw̄hn, one can define (possibly by enlarging the prob-
ability space) the chain ξhn and controls uhn so that they have the same law as
originally. This can be done by using a procedure that is similar to the con-
struction in Theorem 5.2. One starts with the sets in the probability space on
which the σδw̄hn take their particular values. Then modify them by sets whose
probabilities are h|bi(ξhn, uhn)|/Q analogously to what was done in Theorem 5.2.
One can then construct the chain and controls recursively so that the law of
the original process is unchanged. I.e., starting with x(0), get un0 which is a
(possibly random) function of x(0). Then compute δw̄h0 and then ξh1 as just
described, and continue. Given the controls uhn, they can be time and space
discretized and delayed,9 as in Theorem 5.4.

From Lemma 5.5, we have, w.p.1 for large n,∣∣∣∣∣
n∑
i=0

hφi − hB(t)

∣∣∣∣∣ = ho(n0.5−c). (5.22)

Consider Case 1. The process w(·) = hB(·/∆th)/
√
Q is a Wiener process

whose covariance is the identity. By the above arguments and (5.22), there is a
constant c > 0 and a th → 0 as h→ 0 such that for∣∣∣∣∣∣

t/∆th∑
i=0

δw̄hi − w(t)

∣∣∣∣∣∣ = o(t[∆th]c) (5.23)

w.p.1 for t ≥ th and small h. For Case 2, the result is the same since the
9Actually, it is only required that the controls be approximated and delayed such that the

control applied on [n∆, n∆+∆) is Fh
n∆−-measurable. The other aspects of the discretization

are not needed.
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difference between the w̄h(·) processes for the two cases is

t(Q+hb̄)/h2∑
i=tQ/h2

δwhi ,

and the sup of this over any finite interval goes to zero in mean square as h→ 0.
We can suppose that w(·) is the discrete time process that yields the w(n∆)

in (2.5). We can also suppose that the controls that were constructed for the
chain are applied to (2.5). By the above arguments concerning the approxima-
tion of w̄h(·) by w(·), we can write w̄h(t) = w(t) + ρh(t), where the process
ρh(·) has independent increments, and limh→0E sups≤t |ρh(s)|2 = 0. From this
point on the proof is standard, using the Lipschitz condition and the martingale
properties.

6 An Approximate Equilibrium for the Diffu-
sion Process is an Approximate Equilibrium
for the Chain and Vice Versa

Representations of the transition probability and controls. In the next
two theorems, we will use the representations of the transitions of the Markov
chain in terms of the i.i.d. random variables {χn} discussed in the paragraph
after (5.1), and the similar representation for the realizations of the rule (4.2)
in terms of the random variables {θl} noted in the discussion just below the
statement of Theorem 4.1. This assures that the sample path of the approxi-
mating chain depends only on the selected control values, and that the selected
control value in (4.2) depends only on the past values of the control and Wiener
process.

Theorem 6.1. Assume (A2.1), (A2.2), and (A4.1). An ε-equilibrium value for
(2.1) or (2.3) is an ε1-equilibrium value for the approximating Markov chain,
where ε1 → 0 as ε→ 0.

Proof. Let ε > 0 be given. By (A4.1), there is an ε-equilibrium strategy
pair for (2.3) under which the solution to (2.3) is well defined. By Theorem 4.1,
without loss of generality, and for small enough µ, δ and ∆, it can be represented
as in (4.2), where we can suppose that ∆/δ is an integer, and the pi,k(·) are
continuous in the w variables. We can suppose, w.l.o.g., that for each n, k and
i, the rule (4.2) is defined for all possible conditioning u-sequences with values
in Uµi , i = 1, 2. Let c̄∆1 (·), c̄∆2 (·) denote this strategy pair. The strategies c̄∆i (·)
depend on µ and δ as well as on ∆, but for simplicity we suppress that in the
notation. Recall that when a strategy that is defined by a rule such as (4.2) is
applied to an arbitrary relaxed control, the formula (4.2) is actually applied to
the space-time discretization of that relaxed control, as defined above Theorem
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3.3. These strategies c̄∆i (·) will need to be adapted for use on the chain. To do
this, simply replace the w(·)-samples in (4.2) by samples of the wh(·) process
that was defined in the last section. Keep in mind that these strategies are used
for theoretical purposes only, to prove a convergence theorem. They are not for
practical implementation. For each integer k, the control value uµ,δ,∆,hi (kδ) that
is obtained from the rule (4.2) with wh(·) used will be applied to the chain for
all steps m such that τhm ∈ [kδ, kδ + δ). The resulting strategies for the chain
will be denoted by c̄∆,hi (·) and are in Chi .

We want to show that for small enough (µ,∆, δ), there are ε0 > 0 and h0 > 0,
where ε0 → 0 as ε→ 0 such that for h ≤ h0 and any sequence rhi (·) of admissible
relaxed (or ordinary) controls for the chain,

Wh
1 (x, c̄∆,h1 , c̄∆,h2 ) ≥Wh

1 (x, rh1 , c̄
∆,h
2 )− ε0,

Wh
2 (x, c̄∆,h1 , c̄∆,h2 ) ≥Wh

2 (x, c̄∆,h1 , rh2 )− ε0.
(6.1)

The notation Wh
2 (x, c̄∆,h1 , rh2 ) implies that player 1 uses strategy c̄∆,h1 (·) and

player 2 uses relaxed control rh2 (·) (in continuous time interpolation notation), or
an ordinary control with this relaxed control representation, with the analogous
interpretation when the indices are reversed. The notation Wh

1 (x, c̄∆,h1 , c̄∆,h2 )
implies that player i uses strategy c̄∆,hi (·), i = 1, 2.

Suppose that the pair c̄∆,hi (·), i = 1, 2, is used for the chain. Let r̄µ,δ,∆,hi (·), i =
1, 2, denote the (continuous time interpolation notation) relaxed control repre-
sentation of the control actions. Let ξh(·), wh(·), and τh denote the correspond-
ing interpolation of the chain, the “pre-Wiener” process, and the exit time, resp.
The sequence (ξh(·), r̄µ,δ,∆,h1 (·), r̄µ,δ,∆,h2 (·), wh(·), τh) is tight. Select a weakly
convergent subsequence with limit denoted by (x(·), r1(·), r2(·), w(·), τ), where
(x(·), r1(·), r2(·), I{τ≤·}) is non-anticipative with respect to the standard vector-
valued Wiener process w(·), and the set (x(·), r1(·), r2(·), w(·)) solves (2.3). The
limit τ is the first hitting time of the boundary of G by the limit process x(·).
The details concerning the tightness, characterization of the limit processes and
boundary hitting times, and that they solve (2.3), are the same as for the control
problem in [15, Chapters 10, 11].

Henceforth, when weak convergent sequences are dealt with, when needed
for simplicity in the argument we will suppose (without loss of generality) that
the Skorohod representation is used so that all processes are defined on the same
probability space and the weak convergence is equivalent to convergence with
probability one in the appropriate topology [5, Theorem 1.8, Chapter 3].

Under Skorohod representation, the rule (4.2) with the wh(·)-samples used
converges w.p.1 to the same rule with the w(·)-samples used, due to the con-
vergence wh(·) → w(·) and the continuity of the probabilities in (4.2) in the
w-variables. Because of this, the limits ri(·), i = 1, 2, are just realizations of
the original ε-equilibrium strategies c̄∆i (·), i = 1, 2. Since the solution to (2.1) or
(2.3) is unique for each admissible pair (control, Wiener process), we can con-
clude that the probability law of any limit set (x(·), r1(·), r2(·), w(·)) is the same,
no matter what the selected convergent subsequence. Hence the original set of
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processes (before the subsequence was taken) converges weakly to this (unique
in the sense of probability law) limit set, where the control is determined by the
rules c̄∆i (·), i = 1, 2.

By the weak convergence

W1(x, c̄∆1 , c̄
∆
2 )←Wh

1 (x, c̄∆,h1 , c̄∆,h2 ) ≤ max
r1∈Uh

1

Wh
1 (x, r1, c̄

∆,h
2 ) = Wh

1 (x, r̂h1 , c̄
∆,h
2 ).

(6.2)
W2(x, c̄∆1 , c̄

∆
2 )←Wh

2 (x, c̄∆,h1 , c̄∆,h2 ) ≤ max
r2∈Uh

2

Wh
2 (x, c̄∆,h1 , r2) = Wh

1 (x, c̄∆,h1 , r̂h2 ).

(6.3)
It can be shown by a weak convergence argument working with the chain for
any fixed h > 0 that the maximizing controls r̂hi (·) exist. But we need only work
with control process that approximate the maximum values arbitrarily well and
we suppose that the r̂hi (·) are such controls.

It will be shown that

lim suph→0W
h
1 (x, r̂h1 , c̄

∆,h
2 ) ≤W1(x, c̄∆1 , c̄

∆
2 ) + ε+ ρ(µ, δ,∆), (6.4)

where ρ(µ, δ,∆) → 0 as (µ, δ,∆) → 0, with the analogous result for indices
1, 2 interchanged. Inequalities (6.2), (6.3), and (6.4) imply that if player 2 uses
c̄∆,h2 (·), then player 1 cannot do better (asymptotically, as h → 0 and modulo
ρ(µ, δ,∆) + ε) than by using c̄∆,h1 (·), with the analogous result holding for the
other player. This last fact implies the theorem since (µ, δ,∆) can be made as
small as desired.

Now (6.4) will be shown. Let {uµ,δ,∆,h1 (lδ)} denote the values that are ob-
tained from r̂h1 (·) by the space and time discretization given above Theorem
3.3, and which are used by the rule c̄∆,h2 (·). Let {uµ,δ,∆,h2 (lδ)} denote the con-
trol choices for player 2, based on the rule c̄∆,h2 (·) and the control of player.
Let rµ,δ,∆,hi (·) denote the (continuous time) relaxed control representation of
{uµ,δ,∆,hi (lδ)}. The processes ξh(·) and wh(·) now denote the interpolation of
the chain and the pre-Wiener process, resp., under the strategy c̄∆,h2 (·) and con-
trol r̂h1 (·). This wh(·) process will be fixed for each h and used in the rest of the
proof.

Define the process ξµ,δ,∆,h(·) by (5.12), driven by the {uµ,δ,∆,hi (lδ)}, i = 1, 2,
and wh(·). Note that {uµ,δ,∆,h2 (lδ)} is the response of c̄∆,h2 (·) to any control of
player 1 with discretization {uµ,δ,∆,h1 (lδ)}. By Theorem 5.1, we have, for small
h, ∣∣∣Wh

i (x, r̂h1 , c̄
∆,h
2 )−Wµ,δ,∆,h

i (x, rµ,δ,∆,h1 , rµ,δ,∆,h2 )
∣∣∣ ≤ ρ1(µ, δ,∆) (6.5)

where ρ1(µ, δ,∆) can be made arbitrarily small, uniformly in r̂h(·), as (µ, δ,∆, h)→
0. Also,

Wµ,δ,∆,h
i (x, rµ,δ,∆,h1 , rµ,δ,∆,h2 ) = Wµ,δ,∆,h

i (x, rµ,δ,∆,h1 , c̄∆,h2 ). (6.6)

Let τh denote the first hitting time of the boundary for ξµ,δ,∆,h(·).

31



The set (ξξµ,δ,∆,h(·), r̂h1 (·), rµ,δ,∆,h1 (·), rµ,δ,∆,h2 (·), wh(·), τh) is tight. Extract
a weakly convergent subsequence, and index it by h also. Denote the limit of the
weakly convergent subsequence by (x(·), r̂1(·), rµ,δ,∆1 (·), rµ,δ,∆2 (·). w(·), τ). Then,
as was the case in an earlier part of the proof, (x(·), r̂1(·), rµ,δ,∆1 (·), rµ,δ,∆2 (·),
w(·), I{τ≤·}) is non-anticipative with respect to the standard Wiener process
w(·), the set (x(·), rµ,δ,∆1 (·), rµ,δ,∆2 (·), w(·)) satisfies (2.3), and τ is the first hitting
time of the boundary. The rµ,δ,∆i (·) is just the relaxed control that is defined
by the weak sense limit {uµ,δ,∆i (lδ)} of {uµ,δ,∆,hi (lδ)}.

We need to show that the limits uµ,δ,∆(lδ) are chosen by the conditional
probability law that determines c̄∆2 (·). I.e., that (along the selected subsequence)

p2,k

(
α2; wh(l∆), l ≤ n;uµ,δ,∆,hj (lδ), j = 1, 2, lδ < n∆

)
→ p2,k

(
α2; w(l∆), l ≤ n;uµ,δ,∆j (lδ), j = 1, 2, lδ < n∆

) (6.7)

for kδ ∈ [n∆, n∆+∆). In (6.7), the wh(·) can be replaced by its limit w(·) due to
the continuity in w. Since there are only a finite number of values for the control,
for any t < ∞ the limit {uµ,δ,∆1 (lδ), uµ,δ,∆2 (lδ), lδ ≤ t} will be achieved after a
finite number of steps through the convergent subsequence, w.p.1. This implies
(6.7). [We will comment further on this point at the end of the proof.] Thus
the policy c̄∆2 (·) acting on any relaxed control with discretization {uµ,δ,∆1 (lδ)}
will yield the sequence {uµ,δ,∆2 (lδ)}. Thus,

Wµ,δ,∆,h
1 (x, rµ,δ,∆,h1 (·), c̄∆,h2 )→W1(x, r

µ,δ,∆
1 (·), c̄∆2 )

and by (6.5) and (6.6), mod ρ1(µ, δ,∆),

Wh
1 (x, r̂h1 , c̄

∆,h
2 )→W1(x, r

µ,δ,∆
1 (·), c̄∆2 ).

We can conclude that

lim
h→0

Wh
1 (x, r̂h1 , c

∆,h
2 ) ≤W1(x, r

µ,δ,∆
1 (·), c̄∆2 ) + ρ1(µ, δ,∆)

≤W1(x, c̄∆1 , c̄
∆
2 ) + ρ1(µ, δ,∆) + ε,

(6.8)

where the ε is due to the fact that (c̄∆1 (·), c̄∆2 (·)) is an ε-equilibrium. The ar-
bitrariness of the subsequence implies (6.4). The same argument is used when
the indices 1, 2 are reversed.

Finally, let us comment on (6.7). Recall that the discretizations given above
Theorem 3.3 use fixed (and asymptotically unimportant) values on the initial
interval [0,∆), so let us use uµ,δ,∆,h1 (lδ) = u1(lδ), u

µ,δ,∆,h
2 (lδ) = u2(lδ) for fixed

ui(lδ) and lδ < ∆. For kδ ∈ [∆, 2∆), we have the rule

p2,k

(
α2;wh(∆);u1(lδ), u2(lδ), lδ < ∆

)
(6.9)

and the probability of selecting any α2 ∈ Uµ2 converges as wh(·) → w(·).
Then the limit in (6.9) must be the law of uµ,δ,∆2 (l∆),∆ ≤ lδ < 2∆. Us-
ing the method of selecting the control values in terms of the θi that was

32



recalled above the theorem statement, we can suppose that the convergence
uµ,δ,∆,h2 (lδ)→ uµ,δ,∆2 (lδ),∆ ≤ lδ < 2∆, occurs in a finite number of steps w.p.1,
as h → 0 through the convergent subsequence, with the rule (6.9) used. Next,
on [2∆, 2∆ + ∆), we have the rule

p2,k

(
α2;wh(l∆), l ≤ 2;ui(lδ), lδ < ∆;uµ,δ,∆,hi (lδ),∆ ≤ lδ < 2∆, i = 1, 2

)
.

The uµ,δ,∆,h1 (lδ),∆ ≤ lδ < 2∆, can be assumed to converge in a finite num-
ber of steps as well, w.p.1. Hence, as above, so do the selected values of
uµ,δ,∆,h2 (lδ),∆ ≤ lδ < ∆ + 2∆. Continuing in this way yields the form (6.7).

The converse result.
If the ε-equilibrium value for the chain is unique for arbitrarily small ε, then

the converse result is true; namely that ε-equilibrium values for the chain are
ε1-equilibrium values for (2.3), where ε1 → 0 as ε → 0, and we are done, since
Theorem 6.1 then implies that the ε-equilibrium values for the diffusion are also
unique for small ε, and that the numerical solutions will converge to the desired
value. If the ε-equilibrium value for the chain is not unique for arbitrarily small
ε, then we will show that this “converse” assertion is true for the model used in
Theorem 5.2. We are not able to show the converse result when σ(·) depends
on x.

Theorem 6.2. Assume (A2.1) and (A2.2) and the model used in Theorem 5.2.
Then for any ε > 0 there is ε1 > 0 which goes to zero as ε → 0 such that an
ε-equilibrium value for the chain ξhn for small h is an ε1-equilibrium value for
(2.3).

Proof. Theorem 5.4 says that the paths and cost functions for (5.15) (which
is ξh(·) under an arbitrary control), (5.16) (where the control is as in (5.15)
but the driving process is w̄h(·)), and (5.18) (which is (5.16) with discretized
controls) are arbitrarily close, uniformly in the controls, for small (µ, δ,∆, h).
Theorem 5.6 gives the same result for (5.18) and xµ,δ,∆(·), which is (2.5) with
discretized controls. Theorem 3.3 implies the same thing for xµ,δ,∆(·) and (2.3).
This yields the result.
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